Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Nat Commun ; 15(1): 2863, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627362

RESUMO

Immune checkpoint inhibition has shown success in treating metastatic cutaneous melanoma but has limited efficacy against metastatic uveal melanoma, a rare variant arising from the immune privileged eye. To better understand this resistance, we comprehensively profile 100 human uveal melanoma metastases using clinicogenomics, transcriptomics, and tumor infiltrating lymphocyte potency assessment. We find that over half of these metastases harbor tumor infiltrating lymphocytes with potent autologous tumor specificity, despite low mutational burden and resistance to prior immunotherapies. However, we observe strikingly low intratumoral T cell receptor clonality within the tumor microenvironment even after prior immunotherapies. To harness these quiescent tumor infiltrating lymphocytes, we develop a transcriptomic biomarker to enable in vivo identification and ex vivo liberation to counter their growth suppression. Finally, we demonstrate that adoptive transfer of these transcriptomically selected tumor infiltrating lymphocytes can promote tumor immunity in patients with metastatic uveal melanoma when other immunotherapies are incapable.


Assuntos
Melanoma , Neoplasias Cutâneas , Neoplasias Uveais , Humanos , Melanoma/genética , Melanoma/terapia , Neoplasias Uveais/genética , Neoplasias Uveais/terapia , Linfócitos do Interstício Tumoral , Imunoterapia , Microambiente Tumoral/genética
2.
Cancer Res Commun ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626341

RESUMO

p16 is a tumor suppressor encoded by the CDKN2A gene whose expression is lost in ~50% of all human cancers. In its canonical role, p16 inhibits the G1-S phase cell cycle progression through suppression of cyclin dependent kinases. Interestingly, p16 also has roles in metabolic reprogramming, and we previously published that loss of p16 promotes nucleotide synthesis via the pentose phosphate pathway. However, the broader impact of p16/CDKN2A loss on other nucleotide metabolic pathways and potential therapeutic targets remains unexplored. Using CRISPR KO libraries in isogenic human and mouse melanoma cell lines, we determined several nucleotide metabolism genes essential for the survival of cells with loss of p16/CDKN2A. Consistently, many of these genes are upregulated in melanoma cells with p16 knockdown or endogenously low CDKN2A expression. We determined that cells with low p16/CDKN2A expression are sensitive to multiple inhibitors of de novo purine synthesis, including anti-folates. Finally, tumors with p16 knockdown were more sensitive to the anti-folate methotrexate in vivo than control tumors. Together, our data provide evidence to reevaluate the utility of these drugs in patients with p16/CDKN2Alow tumors as loss of p16/CDKN2A may provide a therapeutic window for these agents.

3.
bioRxiv ; 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37503050

RESUMO

p16 is a tumor suppressor encoded by the CDKN2A gene whose expression is lost in ~50% of all human cancers. In its canonical role, p16 inhibits the G1-S phase cell cycle progression through suppression of cyclin dependent kinases. Interestingly, p16 also has roles in metabolic reprogramming, and we previously published that loss of p16 promotes nucleotide synthesis via the pentose phosphate pathway. Whether other nucleotide metabolic genes and pathways are affected by p16/CDKN2A loss and if these can be specifically targeted in p16/CDKN2A-low tumors has not been previously explored. Using CRISPR KO libraries in multiple isogenic human and mouse melanoma cell lines, we determined that many nucleotide metabolism genes are negatively enriched in p16/CDKN2A knockdown cells compared to controls. Indeed, many of the genes that are required for survival in the context of low p16/CDKN2A expression based on our CRISPR screens are upregulated in p16 knockdown melanoma cells and those with endogenously low CDKN2A expression. We determined that cells with low p16/Cdkn2a expression are sensitive to multiple inhibitors of de novo purine synthesis, including anti-folates. Tumors with p16 knockdown were more sensitive to the anti-folate methotrexate in vivo than control tumors. Together, our data provide evidence to reevaluate the utility of these drugs in patients with p16/CDKN2A-low tumors as loss of p16/CDKN2A may provide a therapeutic window for these agents.

4.
Oncoimmunology ; 12(1): 2192098, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998620

RESUMO

Peripheral glia, specifically the Schwann cells (SCs), have been implicated in the formation of the tumor microenvironment (TME) and in cancer progression. However, in vivo and ex vivo analyses of how cancers reprogram SC functions in different organs of tumor-bearing mice are lacking. We generated Plp1-CreERT/tdTomato mice which harbor fluorescently labeled myelinated and non-myelin forming SCs. We show that this model enables the isolation of the SCs with high purity from the skin and multiple other organs. We used this model to study phenotypic and functional reprogramming of the SCs in the skin adjacent to melanoma tumors. Transcriptomic analyses of the peritumoral skin SCs versus skin SCs from tumor-free mice revealed that the former existed in a repair-like state typically activated during nerve and tissue injury. Peritumoral skin SCs also downregulated pro-inflammatory genes and pathways related to protective anti-tumor responses. In vivo and ex vivo functional assays confirmed immunosuppressive activities of the peritumoral skin SCs. Specifically, melanoma-reprogrammed SCs upregulated 12/15-lipoxygenase (12/15-LOX) and cyclooxygenase (COX)-2, and increased production of anti-inflammatory polyunsaturated fatty acid (PUFA) metabolites prostaglandin E2 (PGE2) and lipoxins A4/B4. Inhibition of 12/15-LOX or COX2 in SCs, or EP4 receptor on lymphocytes reversed SC-dependent suppression of anti-tumor T-cell activation. Therefore, SCs within the skin adjacent to melanoma tumors demonstrate functional switching to repair-like immunosuppressive cells with dysregulated lipid oxidation. Our study suggests the involvement of the melanoma-associated repair-like peritumoral SCs in the modulation of locoregional and systemic anti-tumor immune responses.


Assuntos
Araquidonato 15-Lipoxigenase , Melanoma , Camundongos , Animais , Ciclo-Oxigenase 2/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo , Células de Schwann/metabolismo , Células de Schwann/patologia , Eicosanoides/metabolismo , Linfócitos T , Microambiente Tumoral
5.
Cancer Immunol Res ; 10(9): 1141-1154, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35834791

RESUMO

Peripheral neurons comprise a critical component of the tumor microenvironment (TME). The role of the autonomic innervation in cancer has been firmly established. However, the effect of the afferent (sensory) neurons on tumor progression remains unclear. Utilizing surgical and chemical skin sensory denervation methods, we showed that afferent neurons supported the growth of melanoma tumors in vivo and demonstrated that sensory innervation limited the activation of effective antitumor immune responses. Specifically, sensory ablation led to improved leukocyte recruitment into tumors, with decreased presence of lymphoid and myeloid immunosuppressive cells and increased activation of T-effector cells within the TME. Cutaneous sensory nerves hindered the maturation of intratumoral high endothelial venules and limited the formation of mature tertiary lymphoid-like structures containing organized clusters of CD4+ T cells and B cells. Denervation further increased T-cell clonality and expanded the B-cell repertoire in the TME. Importantly, CD8a depletion prevented denervation-dependent antitumor effects. Finally, we observed that gene signatures of inflammation and the content of neuron-associated transcripts inversely correlated in human primary cutaneous melanomas, with the latter representing a negative prognostic marker of patient overall survival. Our results suggest that tumor-associated sensory neurons negatively regulate the development of protective antitumor immune responses within the TME, thereby defining a novel target for therapeutic intervention in the melanoma setting.


Assuntos
Melanoma , Neoplasias Cutâneas , Estruturas Linfoides Terciárias , Humanos , Imunidade , Microambiente Tumoral
6.
Cell Host Microbe ; 30(7): 1003-1019.e10, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35658976

RESUMO

The triggers that drive interferon-γ (IFNγ)-producing CD8 T cell (Tc1 cell)-mediated autoimmune hepatitis (AIH) remain obscure. Here, we show that lack of hematopoietic Tet methylcytosine dioxygenase 2 (Tet2), an epigenetic regulator associated with autoimmunity, results in the development of microbiota-dependent AIH-like pathology, accompanied by hepatic enrichment of aryl hydrocarbon receptor (AhR) ligand-producing pathobionts and rampant Tc1 cell immunity. We report that AIH-like disease development is dependent on both IFNγ and AhR signaling, as blocking either reverts ongoing AIH-like pathology. Illustrating the critical role of AhR-ligand-producing pathobionts in this condition, hepatic translocation of the AhR ligand indole-3-aldehyde (I3A)-releasing Lactobacillus reuteri is sufficient to trigger AIH-like pathology. Finally, we demonstrate that I3A is required for L. reuteri-induced Tc1 cell differentiation in vitro and AIH-like pathology in vivo, both of which are restrained by Tet2 within CD8 T cells. This AIH-disease model may contribute to the development of therapeutics to alleviate AIH.


Assuntos
Proteínas de Ligação a DNA , Dioxigenases , Hepatite Autoimune , Limosilactobacillus reuteri , Fígado , Microbiota , Animais , Proteínas de Ligação a DNA/genética , Dioxigenases/genética , Disbiose/complicações , Hepatite Autoimune/etiologia , Hepatite Autoimune/patologia , Interferon gama , Ligantes , Fígado/imunologia , Fígado/microbiologia , Camundongos , Microbiota/genética , Microbiota/imunologia , Linfócitos T Citotóxicos
7.
Cell Rep ; 36(11): 109699, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34525351

RESUMO

Regulatory T cells (Treg cells) are critical mediators of self-tolerance, but they can also limit effective anti-tumor immunity. Although under homeostasis a small fraction of Treg cells in lymphoid organs express the putative checkpoint molecule Tim-3, this protein is expressed by a much larger proportion of tumor-infiltrating Treg cells. Using a mouse model that drives cell-type-specific inducible Tim-3 expression, we show that expression of Tim-3 by Treg cells is sufficient to drive Treg cells to a more effector-like phenotype, resulting in increases in suppressive activity, effector T cell exhaustion, and tumor growth. We also show that T-reg-cell-specific inducible deletion of Tim-3 enhances anti-tumor immunity. Enhancement of Treg cell function by Tim-3 is strongly correlated with increased expression of interleukin-10 (IL-10) and a shift to a more glycolytic metabolic phenotype. Our data demonstrate that Tim-3+ Treg cells may be a relevant therapeutic target cell type for the treatment of cancer.


Assuntos
Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Linfócitos T Reguladores/metabolismo , Microambiente Tumoral , Animais , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Feminino , Regulação da Expressão Gênica , Glicólise , Receptor Celular 2 do Vírus da Hepatite A/deficiência , Receptor Celular 2 do Vírus da Hepatite A/genética , Interleucina-10/genética , Interleucina-10/metabolismo , Masculino , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação Oxidativa , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Serina-Treonina Quinases TOR/metabolismo
8.
J Control Release ; 338: 505-526, 2021 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-34450196

RESUMO

We have demonstrated, for the first time that microvesicles, a sub-type of extracellular vesicles (EVs) derived from hCMEC/D3: a human brain endothelial cell (BEC) line transfer polarized mitochondria to recipient BECs in culture and to neurons in mice acute brain cortical and hippocampal slices. This mitochondrial transfer increased ATP levels by 100 to 200-fold (relative to untreated cells) in the recipient BECs exposed to oxygen-glucose deprivation, an in vitro model of cerebral ischemia. We have also demonstrated that transfer of microvesicles, the larger EV fraction, but not exosomes resulted in increased mitochondrial function in hypoxic endothelial cultures. Gene ontology and pathway enrichment analysis of EVs revealed a very high association to glycolysis-related processes. In comparison to heterotypic macrophage-derived EVs, BEC-derived EVs demonstrated a greater selectivity to transfer mitochondria and increase endothelial cell survival under ischemic conditions.


Assuntos
Micropartículas Derivadas de Células , Vesículas Extracelulares , Animais , Encéfalo , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Camundongos , Mitocôndrias
9.
Aging (Albany NY) ; 12(24): 24633-24650, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33347425

RESUMO

Physical frailty's impact on hemagglutination inhibition antibody titers (HAI) and peripheral blood mononuclear cell (PBMC) transcriptional responses after influenza vaccination is unclear. Physical frailty was assessed using the 5-item Fried frailty phenotype in 168 community- and assisted-living adults ≥55 years of age during an observational study. Blood was drawn before, 3, 7, and 28 days post-vaccination with the 2017-2018 inactivated influenza vaccine. HAI response to the A/H1N1 strain was measured at Days 0 and 28 using seropositivity, seroconversion, log2 HAI titers, and fold-rise in log2 HAI titers. RNA sequencing of PBMCs from Days 0, 3 and 7 was measured in 28 participants and compared using pathway analyses. Frailty was not significantly associated with any HAI outcome in multivariable models. Compared with non-frail participants, frail participants expressed decreased cell proliferation, metabolism, antibody production, and interferon signaling genes. Conversely, frail participants showed elevated gene expression in IL-8 signaling, T-cell exhaustion, and oxidative stress pathways compared with non-frail participants. These results suggest that reduced effectiveness of influenza vaccine among older, frail individuals may be attributed to immunosenescence-related changes in PBMCs that are not reflected in antibody levels.


Assuntos
Formação de Anticorpos/imunologia , Proliferação de Células , Fragilidade/imunologia , Vacinas contra Influenza/uso terapêutico , Influenza Humana/prevenção & controle , Vacinas de Produtos Inativados/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Moradias Assistidas , Estudos de Casos e Controles , Feminino , Fragilidade/genética , Testes de Inibição da Hemaglutinação , Humanos , Vida Independente , Interferons , Interleucina-8/genética , Interleucina-8/imunologia , Leucócitos Mononucleares , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo/genética , Estresse Oxidativo/imunologia , Linfócitos T/imunologia
10.
Cancer Manag Res ; 12: 4411-4427, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32606936

RESUMO

BACKGROUND: Elongation factor for RNA polymerase II 2 (ELL2) was reported as a putative tumor suppressor in the prostate. ELL2 is frequently down-regulated in prostatic adenocarcinoma specimens, and loss of ELL2 induced murine prostatic intraepithelial neoplasia and enhanced AR-positive prostate cancer cell proliferation. However, the ELL2 gene appears to be amplified in AR-negative neuroendocrine prostate tumors, suggesting a potential oncogenic role for ELL2 in AR-negative prostate cancer cells. In this study, we explored the potential function of ELL2 in PC-3 and DU145, two AR-negative prostate cancer cell lines. MATERIALS AND METHODS: The role of ELL2 in PC-3 and DU145 cells was studied using siRNA-mediated ELL2 knockdown. Genes regulated by ELL2 knockdown in PC-3 cells were identified and analyzed using RNA-Seq and bioinformatics. The expression of representative genes was confirmed by Western blot and/or quantitative PCR. Cell growth was determined by BrdU, MTT and colony formation assays. Cell death was analyzed by 7-AAD/Annexin V staining and trypan blue exclusion staining. Cell cycle was determined by PI staining and flow cytometry. RESULTS: ELL2 knockdown inhibited the proliferation of PC-3 and DU145 cells. RNA-Seq analysis showed an enrichment in genes associated with cell death and survival following ELL2 knockdown. The interferon-γ pathway was identified as the top canonical pathway comprising of 55.6% of the genes regulated by ELL2. ELL2 knockdown induced an increase in STAT1 and IRF1 mRNA and an induction of total STAT1 and phosphorylated STAT1 protein. Inhibition of cell proliferation by ELL2 knockdown was partly abrogated by STAT1 knockdown. ELL2 knockdown inhibited colony formation and induced apoptosis in both PC-3 and DU145 cells. Furthermore, knockdown of ELL2 caused S-phase cell cycle arrest, inhibition of CDK2 phosphorylation and cyclin D1 expression, and increased expression of cyclin E. CONCLUSION: ELL2 knockdown in PC-3 and DU145 cells induced S-phase cell cycle arrest and profound apoptosis, which was accompanied by the induction of genes associated with cell death and survival pathways. These observations suggest that ELL2 is a potential oncogenic protein required for survival and proliferation in AR-negative prostate cancer cells.

11.
Hum Vaccin Immunother ; 16(8): 1782-1790, 2020 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-32298194

RESUMO

The human immune response to inactivated influenza vaccine is dynamic and impacted by age and preexisting immunity. Our goal was to identify postvaccination transcriptomic changes in peripheral blood mononuclear cells from children. Blood samples were obtained before and at 3 or 7 days postvaccination with 2016-2017 quadrivalent inactivated influenza vaccine and RNA sequencing was performed. There were 1,466 differentially expressed genes (DEGs) for the Day 0-Day 3 group and 513 DEGs for the Day 0-Day 7 group. Thirty-three genes were common between the two groups. The majority of the transcriptomic changes at Day 3 represented innate inflammation and apoptosis pathways. Day 7 DEGs were characterized by activation of cellular processes, including the regulation of cytoskeleton, junctions, and metabolism, and increased expression of immunoglobulin genes. DEGs at Day 3 were compared between older and younger children revealing increased inflammatory gene expression in the older group. Vaccine history in the year prior to the study was characterized by robust DEGs at Day 3 with decreased phagosome and dendritic cell maturation in those who had been vaccinated in the previous year. PBMC responses to inactivated influenza vaccination in children differed significantly by the timing of sampling, patient age, and vaccine history. These data provide insight into the expected molecular pathways to be temporally altered by influenza vaccination in children.


Assuntos
Vacinas contra Influenza , Influenza Humana , Anticorpos Antivirais , Criança , Humanos , Influenza Humana/prevenção & controle , Leucócitos Mononucleares , Vacinação , Vacinas de Produtos Inativados
12.
Mol Cancer Ther ; 19(1): 75-88, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31554654

RESUMO

Reactivation of androgen receptor (AR) appears to be the major mechanism driving the resistance of castration-resistant prostate cancer (CRPC) to second-generation antiandrogens and involves AR overexpression, AR mutation, and/or expression of AR splice variants lacking ligand-binding domain. There is a need for novel small molecules targeting AR, particularly those also targeting AR splice variants such as ARv7. A high-throughput/high-content screen was previously reported that led to the discovery of a novel lead compound, 2-(((3,5-dimethylisoxazol-4-yl)methyl)thio)-1-(4-(2,3-dimethylphenyl)piperazin-1-yl)ethan-1-one (IMTPPE), capable of inhibiting nuclear AR level and activity in CRPC cells, including those resistant to enzalutamide. A novel analogue of IMTPPE, JJ-450, has been investigated with evidence for its direct and specific inhibition of AR transcriptional activity via a pulldown assay and RNA-sequencing analysis, PSA-based luciferase, qPCR, and chromatin immunoprecipitation assays, and xenograft tumor model 22Rv1. JJ-450 blocks AR recruitment to androgen-responsive elements and suppresses AR target gene expression. JJ-450 also inhibits ARv7 transcriptional activity and its target gene expression. Importantly, JJ-450 suppresses the growth of CRPC tumor xenografts, including ARv7-expressing 22Rv1. Collectively, these findings suggest JJ-450 represents a new class of AR antagonists with therapeutic potential for CRPC, including those resistant to enzalutamide.


Assuntos
Neoplasias de Próstata Resistentes à Castração/genética , Isoformas de Proteínas/genética , Splicing de RNA/genética , Receptores Androgênicos/genética , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/patologia , Transfecção
13.
JCI Insight ; 4(6)2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30779711

RESUMO

Acute respiratory distress syndrome is an often fatal disease that develops after acute lung injury and trauma. How released tissue damage signals, or alarmins, orchestrate early inflammatory events is poorly understood. Herein we reveal that IL-33, an alarmin sequestered in the lung epithelium, is required to limit inflammation after injury due to an unappreciated capacity to mediate Foxp3+ Treg control of local cytokines and myeloid populations. Specifically, Il33-/- mice are more susceptible to lung damage-associated morbidity and mortality that is typified by augmented levels of the proinflammatory cytokines and Ly6Chi monocytes in the bronchoalveolar lavage fluid. Local delivery of IL-33 at the time of injury is protective but requires the presence of Treg cells. IL-33 stimulates both mouse and human Tregs to secrete IL-13. Using Foxp3Cre × Il4/Il13fl/fl mice, we show that Treg expression of IL-13 is required to prevent mortality after acute lung injury by controlling local levels of G-CSF, IL-6, and MCP-1 and inhibiting accumulation of Ly6Chi monocytes. Our study identifies a regulatory mechanism involving IL-33 and Treg secretion of IL-13 in response to tissue damage that is instrumental in limiting local inflammatory responses and may shape the myeloid compartment after lung injury.


Assuntos
Inflamação/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-13/metabolismo , Interleucina-33/metabolismo , Linfócitos T Reguladores/metabolismo , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Líquido da Lavagem Broncoalveolar , Quimiocina CCL2 , Citocinas/metabolismo , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/genética , Fator Estimulador de Colônias de Granulócitos , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Interleucina-33/genética , Interleucina-6 , Pulmão/metabolismo , Pulmão/patologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Síndrome do Desconforto Respiratório/metabolismo , Transcriptoma
14.
Mol Hum Reprod ; 25(3): 124-136, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30590698

RESUMO

Molecular mechanisms responsible for the initiation of primate spermatogenesis remain poorly characterized. Previously, 48 h stimulation of the testes of three juvenile rhesus monkeys with pulsatile LH and FSH resulted in down-regulation of a cohort of genes recognized to favor spermatogonia stem cell renewal. This change in genetic landscape occurred in concert with amplification of Sertoli cell proliferation and the commitment of undifferentiated spermatogonia to differentiate. In this report, the non-protein coding small RNA transcriptomes of the same testes were characterized using RNA sequencing: 537 mature micro-RNAs (miRNAs), 322 small nucleolar RNAs (snoRNAs) and 49 small nuclear RNAs (snRNAs) were identified. Pathway analysis of the 20 most highly expressed miRNAs suggested that these transcripts contribute to limiting the proliferation of the primate Sertoli cell during juvenile development. Gonadotrophin treatment resulted in differential expression of 35 miRNAs, 12 snoRNAs and four snRNA transcripts. Ten differentially expressed miRNAs were derived from the imprinted delta-like homolog 1-iodothyronine deiodinase 3 (DLK1-DIO3) locus that is linked to stem cell fate decisions. Four gonadotrophin-regulated expressed miRNAs were predicted to trigger a local increase in thyroid hormone activity within the juvenile testis. The latter finding leads us to predict that, in primates, a gonadotrophin-induced selective increase in testicular thyroid hormone activity, together with the established increase in androgen levels, at the onset of puberty is necessary for the normal timing of Sertoli cell maturation, and therefore initiation of spermatogenesis. Further examination of this hypothesis requires that peripubertal changes in thyroid hormone activity of the testis of a representative higher primate be determined empirically.


Assuntos
MicroRNAs/metabolismo , Testículo/metabolismo , Hormônios Tireóideos/metabolismo , Animais , Hormônio Foliculoestimulante/metabolismo , Hormônio Luteinizante/metabolismo , Macaca mulatta , Masculino , MicroRNAs/genética , Análise de Sequência de RNA , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Espermatogênese/genética , Espermatogênese/fisiologia , Transcriptoma/genética
15.
Open Forum Infect Dis ; 5(11): ofy277, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30515427

RESUMO

BACKGROUND: The reasons for differences in vaccine effectiveness between live attenuated influenza vaccine (LAIV) and inactivated influenza vaccine (IIV) are not clear. METHODS: Blood samples were obtained before vaccination and at days 7 and 21 postvaccination with 2015-2016 quadrivalent IIV or LAIV. Serologic response to the vaccine was measured by hemagglutination inhibition assay. Targeted RNA sequencing and serum cytokine analysis were performed. Paired analyses were used to determine gene expression and were compared between IIV and LAIV recipients. Classification And Regression Trees analysis (CART) identified the strongest associations with vaccine response. RESULTS: Forty-six enrollees received IIV, and 25 received LAIV. The mean age was 11.5 (±3.7) years. Seroconversion with IIV was associated with changes in expression of PRKRA and IFI6. Nonseroconversion for both IIV and LAIV was characterized by increased interferon-stimulated gene expression. Seroprotection with both vaccines was associated with altered expression of CXCL2 and CD36. For LAIV, CART showed that changes in expression of CD80, CXCL2, and CASP1 were associated with seroprotection. Serum cytokines showed that IIV seroconversion was associated with decreased CCL3. LAIV seroprotection tracked with decreased tumor necrosis factor-α and interferon-γ. CONCLUSIONS: Distinct markers of seroconversion and seroprotection against IIV and LAIV were identified using immunophenotyping and CART analysis.

16.
PLoS One ; 13(5): e0196387, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29738536

RESUMO

Statins inhibit HMG-CoA reductase, the rate-limiting enzyme in the cholesterol biosynthesis pathway (CBP), and are used for the prevention of cardiovascular disease. The anti-inflammatory effects of statins may also provide therapeutic benefits and have led to their use in clinical trials for preeclampsia, a pregnancy-associated inflammatory condition, despite their current classification as category X (i.e. contraindicated during pregnancy). In the developing neocortex, products of the CBP play essential roles in proliferation and differentiation of neural stem-progenitor cells (NSPCs). To understand how statins could impact the developing brain, we studied effects of pravastatin and simvastatin on primary embryonic NSPC survival, proliferation, global transcription, and cell fate in vitro. We found that statins dose dependently decrease NSPC expansion by promoting cell death and autophagy of NSPCs progressing through the G1 phase of the cell cycle. Genome-wide transcriptome analysis demonstrates an increase in expression of CBP genes following pravastatin treatment, through activation of the SREBP2 transcription factor. Co-treatment with farnesyl pyrophosphate (FPP), a CBP metabolite downstream of HMG-CoA reductase, reduces SREBP2 activation and pravastatin-induced PARP cleavage. Finally, pravastatin and simvastatin differentially alter NSPC cell fate and mRNA expression during differentiation, through a non-CBP dependent pathway.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Animais , Autofagia/efeitos dos fármacos , Vias Biossintéticas/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Colesterol/biossíntese , Feminino , Masculino , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Neurais/metabolismo , Fosfatos de Poli-Isoprenil/farmacologia , Pravastatina/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sesquiterpenos/farmacologia , Sinvastatina/farmacologia , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Transcriptoma/efeitos dos fármacos
17.
Mol Cell Endocrinol ; 471: 42-50, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28554804

RESUMO

Fetal exposure to synthetic glucocorticoids reprograms distinct neural circuits in the developing brain, often in a sex-specific manner, via mechanisms that remain poorly understood. To reveal whether such reprogramming is associated with select molecular signatures, we characterized the transcriptome of primary, embryonic mouse cerebral cortical and hypothalamic neural progenitor/stem cells derived from individual male and female embryos exposed to the synthetic glucocorticoid, dexamethasone. Gene expression profiling by RNA-Seq identified differential expression of common and unique genes based upon brain region, sex, and/or dexamethasone exposure. These gene expression datasets provide a unique resource that will inform future studies examining the molecular mechanisms responsible for region- and sex-specific reprogramming of the fetal brain brought about by in utero exposure to excess glucocorticoids.


Assuntos
Córtex Cerebral/embriologia , Dexametasona/farmacologia , Embrião de Mamíferos/citologia , Hipotálamo/embriologia , Células-Tronco Neurais/metabolismo , Caracteres Sexuais , Transcriptoma/genética , Animais , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Transcriptoma/efeitos dos fármacos
18.
Hum Reprod ; 32(10): 2088-2100, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28938749

RESUMO

STUDY QUESTION: What is the genetic landscape within the testis of the juvenile rhesus monkey (Macaca mulatta) that underlies the decision of undifferentiated spermatogonia to commit to a pathway of differentiation when puberty is induced prematurely by exogenous LH and FSH stimulation? SUMMARY ANSWER: Forty-eight hours of gonadotrophin stimulation of the juvenile monkey testis resulted in the appearance of differentiating B spermatogonia and the emergence of 1362 up-regulated and 225 down-regulated testicular mRNAs encoding a complex network of proteins ranging from enzymes regulating Leydig cell steroidogenesis to membrane receptors, and from juxtacrine and paracrine factors to transcriptional factors governing spermatogonial stem cell fate. WHAT IS KNOWN ALREADY: Our understanding of the cell and molecular biology underlying the fate of undifferentiated spermatogonia is based largely on studies of rodents, particularly of mice, but in the case of primates very little is known. The present study represents the first attempt to comprehensively address this question in a highly evolved primate. STUDY DESIGN, SIZE, DURATION: Global gene expression in the testis from juvenile rhesus monkeys that had been stimulated with recombinant monkey LH and FSH for 48 h (N = 3) or 96 h (N = 4) was compared to that from vehicle treated animals (N = 3). Testicular cell types and testosterone secretion were also monitored. PARTICIPANTS/MATERIALS, SETTING, METHODS: Precocious testicular puberty was initiated in juvenile rhesus monkeys, 14-24 months of age, using a physiologic mode of intermittent stimulation with i.v. recombinant monkey LH and FSH that within 48 h produced 'adult' levels of circulating LH, FSH and testosterone. Mitotic activity was monitored by immunohistochemical assays of 5-bromo-2'-deoxyuridine and 5-ethynyl-2'-deoxyuridine incorporation. Animals were bilaterally castrated and RNA was extracted from the right testis. Global gene expression was determined using RNA-Seq. Differentially expressed genes (DEGs) were identified and evaluated by pathway analysis. mRNAs of particular interest were also quantitated using quantitative RT-PCR. Fractions of the left testis were used for histochemistry or immunoflouresence. MAIN RESULTS AND THE ROLE OF CHANCE: Differentiating type B spematogonia were observed after both 48 and 96 h of gonadotrophin stimulation. Pathway analysis identified five super categories of over-represented DEGs. Repression of GFRA1 (glial cell line-derived neurotrophic factor family receptor alpha 1) and NANOS2 (nanos C2HC-type zinc finger 2) that favor spermatogonial stem cell renewal was noted after 48 and 96 h of LH and FSH stimulation. Additionally, changes in expression of numerous genes involved in regulating the Notch pathway, cell adhesion, structural plasticity and modulating the immune system were observed. Induction of genes associated with the differentiation of spermatogonia stem cells (SOHLH1(spermatogenesis- and oogenesis-specific basic helix-loop-helix 1), SOHLH2 and KIT (V-Kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog)) was not observed. Expression of the gene encoding STRA8 (stimulated by retinoic acid 8), a protein generally considered to mark activation of retinoic acid signaling, was below our limit of detection. LARGE SCALE DATA: The entire mRNA data set for vehicle and gonadotrophin treated animals (N = 10) has been deposited in the GEO-NCBI repository (GSE97786). LIMITATIONS REASONS FOR CAUTION: The limited number of monkeys per group and the dilution of low abundance germ cell transcripts by mRNAs contributed from somatic cells likely resulted in an underestimation of the number of differentially expressed germ cell genes. WIDER IMPLICATIONS OF THE FINDINGS: The findings that expression of GDNF (a major promoter of spermatogonial stem cell renewal) was not detected in the control juvenile testes, expression of SOHLH1, SOHLH2 and KIT, promoters of spermatogonial differentiation in mice, were not up-regulated in association with the gonadotrophin-induced generation of differentiating spermatogonia, and that robust activation of the retinoic acid signaling pathway was not observed, could not have been predicted. These unexpected results underline the importance of non-human primate models in translating data derived from animal research to the human situation. STUDY FUNDING/COMPETING INTEREST(S): The work described was funded by NIH grant R01 HD072189 to T.M.P. P.A. was supported by an Endocrine Society Summer Research Fellowship Award and CONICET (Argentine Research Council), S.N. by a grant from Vali-e-Asr Reproductive Health Research Center of Tehran University of Medical Sciences (grant #24335-39-92) to Dr Batool Hosseini Rashidi, and M.P.H. by grants from the National Health and Medical Research Council of Australia, and the Victorian State Government's Operational Infrastructure Support Program. The authors have nothing to disclose.


Assuntos
Gonadotropinas/metabolismo , Espermatogônias/metabolismo , Testículo/metabolismo , Transcriptoma , Animais , Hormônio Foliculoestimulante/metabolismo , Macaca mulatta/genética , Macaca mulatta/metabolismo , Masculino , Modelos Animais , RNA Mensageiro/metabolismo , Maturidade Sexual/genética , Maturidade Sexual/fisiologia , Espermatogênese/genética , Espermatogônias/citologia , Testículo/citologia , Testosterona/metabolismo
19.
Am J Physiol Renal Physiol ; 313(3): F585-F595, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28615248

RESUMO

The OK cell line derived from the kidney of a female opossum Didelphis virginiana has proven to be a useful model in which to investigate the unique regulation of ion transport and membrane trafficking mechanisms in the proximal tubule (PT). Sequence data and comparison of the transcriptome of this cell line to eutherian mammal PTs would further broaden the utility of this culture model. However, the genomic sequence for D. virginiana is not available and although a draft genome sequence for the opossum Monodelphis domestica (sequenced in 2012 by the Broad Institute) exists, transcripts sequenced from both species show significant divergence. The M. domestica sequence is not highly annotated, and the majority of transcripts are predicted rather than experimentally validated. Using deep RNA sequencing of the D. virginiana OK cell line, we characterized its transcriptome via de novo transcriptome assembly and alignment to the M. domestica genome. The quality of the de novo assembled transcriptome was assessed by the extent of homology to sequences in nucleotide and protein databases. Gene expression levels in the OK cell line, from both the de novo transcriptome and genes aligned to the M. domestica genome, were compared with publicly available rat kidney nephron segment expression data. Our studies demonstrate the expression in OK cells of numerous PT-specific ion transporters and other key proteins relevant for rodent and human PT function. Additionally, the sequence and expression data reported here provide an important resource for genetic manipulation and other studies on PT cell function using these cells.


Assuntos
Células Epiteliais/metabolismo , Túbulos Renais Proximais/metabolismo , Gambás/genética , Transcriptoma , Animais , Linhagem Celular , Biologia Computacional , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Transporte de Íons , Túbulos Renais Proximais/citologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Fenótipo , Ratos , Especificidade da Espécie
20.
PLoS One ; 11(10): e0165395, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27788220

RESUMO

BACKGROUND: The Cancer Genome Atlas Project (TCGA) is a National Cancer Institute effort to profile at least 500 cases of 20 different tumor types using genomic platforms and to make these data, both raw and processed, available to all researchers. TCGA data are currently over 1.2 Petabyte in size and include whole genome sequence (WGS), whole exome sequence, methylation, RNA expression, proteomic, and clinical datasets. Publicly accessible TCGA data are released through public portals, but many challenges exist in navigating and using data obtained from these sites. We developed TCGA Expedition to support the research community focused on computational methods for cancer research. Data obtained, versioned, and archived using TCGA Expedition supports command line access at high-performance computing facilities as well as some functionality with third party tools. For a subset of TCGA data collected at University of Pittsburgh, we also re-associate TCGA data with de-identified data from the electronic health records. Here we describe the software as well as the architecture of our repository, methods for loading of TCGA data to multiple platforms, and security and regulatory controls that conform to federal best practices. RESULTS: TCGA Expedition software consists of a set of scripts written in Bash, Python and Java that download, extract, harmonize, version and store all TCGA data and metadata. The software generates a versioned, participant- and sample-centered, local TCGA data directory with metadata structures that directly reference the local data files as well as the original data files. The software supports flexible searches of the data via a web portal, user-centric data tracking tools, and data provenance tools. Using this software, we created a collaborative repository, the Pittsburgh Genome Resource Repository (PGRR) that enabled investigators at our institution to work with all TCGA data formats, and to interrogate these data with analysis pipelines, and associated tools. WGS data are especially challenging for individual investigators to use, due to issues with downloading, storage, and processing; having locally accessible WGS BAM files has proven invaluable. CONCLUSION: Our open-source, freely available TCGA Expedition software can be used to create a local collaborative infrastructure for acquiring, managing, and analyzing TCGA data and other large public datasets.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Genômica , Neoplasias/genética , Humanos , Armazenamento e Recuperação da Informação , Software , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...